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1. Hooke’s law 
Elasticity of materials is the property that they regain their original shape, when the forces causing 
their deformations are removed. We find the property of elasticity in almost all solid materials.  
For a homogenous bar, and for small deformation Hooke’s law apply, which gives the deformation 

l  as a result of a force F. l  is simply proportional to F.  
For traditional reasons the proportionality Fl  is written the other way round. 
 
(1.1)  lkF    
 
The lengthening l  is proportional to the length of the material. This is obvious, since if we 
replace l with 2l. then the same force is acting on the two lengths l, the lengthening will be 2 l . 
Also the lengthening l  must be inversely proportional to the thickness of bar. If we separate the 
bar with the double thickness, affected by the force F, into two identical bars, , each part will be 
affected with the force ½F, and therefore the lengthening will be ½ l . So the lengthening l is 
proportional to the length of the bar, and inversely proportional to the cross section. Thus we have: 
 

  F
A

l
kl    

 
Traditionally Hooke’s law is written: 
 

(1.2)  
l

l
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
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Where E is called is called Young’s modulus, which only depends only on the material in 
question. 
The force per unit area is called the stress, and the stretch per unit length is called the strain. 
Equation (1.2) may then be rewritten as. 
 

(1.3)   
l
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F 
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 Stress = (Young’s modulus) x (strain)  
 
For a rectangular bar, there is a derived effect to Hooke’s law. When you stretch the bar in one 
direction it contracts at right angles to the stretch. The contraction is proportional to the width of 
the bar, and also to ll / . The sidewise contraction is in the same proportion for both width and 
height, and it is usually written. 

(1.4)  
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The constant   is another constant of the material, and it is called Poisson’s ratio. 
 
The two constants E and  specify completely the elastic properties of a homogenous elastic 
material. 
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2. Uniform strain 
Since the principle of superposition applies to 
forces, so does it also to the equations of 
elasticity.  
We shall first deal with a rectangular block under 
uniform hydrostatic pressure. (The figure to the 
left). If we assume that the block is submerged in 
water in a pressure tank, and if we discard the 
differences in pressure due to gravity, then the 
inward pressure, (the stress) is the same in all 
direction, and the force on each side is 
proportional to the area. This follows from de 
definition of pressure: p = F/A.  
First we shall work out the change in length, 
which is the sum of changes caused by the three 
independent forces, illustrated in the figure to the 
left. First the stress caused by F1 in the figure.  
According to (1.3) 
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(2.1)  
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Next, we look at the stress caused by the force 
F2. If we push on the two sides of the block with 
pressure p , the compressional strain is as before 
p/E, but this time we want the lengthwise 
strength. We can get that from the sidewise strain 
multiplied by  . The sidewise strain is: 
 

  
E

p

w

w



 

so 

(2.2) 
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Since there are no differences between the sides 
(2) and (3), we can combine the results from the 
three type of sides to give: 
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The problem is of course symmetrical in all three directions, therefore we must have: 
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(2.4)  )21( 
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The relative change in volume under hydrostatic pressure may also be calculated from V = lwh, so  
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Often VV / is denoted the volume strain, and the relation (2.4) is then written in a slightly 
different way:  
 

(2.5) 
V

V
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3. Shear strain 
Next we shall see what happens, when we put a “shear” stress on 
a bulk of matter. By a shear strain, we mean the kind of distortion 
show in the figure to the left. For simplicity, let us look at the 
strains in a cube of material subjected to the forces, as shown in 
the bottom figure to the left. Again we shall break it up in two 
parts: The vertical pushes and the horizontal pulls. Calling the 
area of the cube face for A, we have for the change in the 
horizontal length. 
 

(3.1)  
A

F

EA

F

EA

F

El

l  


 111
  

 
            The change in the vertical height is just the negative of this.  

Now suppose we have the same cube and subject to the same 
shearing forces, as shown in the figure below to the left. Note 
that all the forces must be equal to keep the cube in equilibrium. 
The cube is then said to be in a state of pure shear.  
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The sum of the two vectors G


 is a vector along the diagonal having the length G2  

The area over which this force acts is A2 . Therefore the tensile stress normal to the plane is G/A. 
Similarly, if we examine a plane 450 the other way – the diagonal B in the figure – we se that there 
is a compressional stress normal to this plane of –G/A. 
From this we see that the stress in a pure shear is equivalent to a combination of tension and 
compression stresses of equal strength at right angle to each other, and at 450 to the original faces 
of the cube. The internal stresses and strains are the same as we would find in a larger block of 
material with the forces shown in the figure above to the right. But this problem, we have already 
solved. The change in length of the diagonal is given by (3.1). 
 

(3.2) 
A
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

 1
    

One diagonal is shortened, the other is elongated. 
It is often convenient to express a shear strain in terms of 
the angle by which the cube is twisted, that is, the angle θ 
in the figure to the left. From the geometry of the figure, 
you can see that the horizontal shift δ of the top edge is 

equal to D2 , so 

(3.3) 
D

D

l


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  

The shear stress   is defined as the tangential force on a 
face divided by the area. AG / .  

Using the previous results (3,2) and (3,3), we get: 
 

(3.4)  
E




1
2  

This may also be written in the form “stress = constant times strain”:   .The coefficient  is 
usually called the shear modulus: It can be expressed by the other elastic constants as 

(3.5)  
)1(2 





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4. The torsion bar 
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We shall now turn to an example which is more complicated because different parts of the material 
are stressed by different amounts. We shall first consider a rod that is twisted. From experiments 
with the torsion pendulum we know that the torque on a twisted rod is proportional to the torsion 
angle, where the constant of proportionality depends on the material and the design of the rod or 
thread. The question is: In what way? We shall now try to answer this question which mainly is a 
geometrical one. 
The figure above shows a cylindrical rod of length L, and radius a, with one end twisted by an 
angle  with respect to the other. If we want to relate the strains to what we already know, we can 
think of the rod of being made up of many cylindrical shells and work out separately what happens 
to each shell. 
We begin by looking at a thin short cylinder of radius r and thickness r , as shown in the figure 
above below to the left. If we look at a piece of this cylinder that was originally a small square, we 
can see that it has been distorted in to a parallelogram. Each such piece is in shear, and the shear 
angle is 

(4.1)  
L

r   

 
The shear stress  in the material is therefore from (3.4). 
 

(4.2)  
L

r   

 
The shear stress is the tangential force F on the end of the square divided by the area rl of the 
end. (See the figure above to the right).  
 

(4.3)  
rl

F




  

 
The force F on such a square contributes a torque   around the axis of the rod equal to 
 
(4.4)  rlrFr    
 
The total torque is the sum of such torques around a complete circumference of the cylinder.  
So putting the pieces together, such that the sl ' add up to the circumference r2 , we find that the 
total torque for a hollow cylinder is 
 
  rrr )2(   
Or using (4.3)  

  
L

rr  


3

2  

We thus find that the rotational “stiffness”  /  of a hollow cylinder is proportional to the radius 
to the third power, to the thickness r , and inversely proportional to the length L. 
We now imagine a circular rod made up of a series of concentric tubes each twisted by the same 
angle  . The total torque is then found by integrating over the radius r. 
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  
a
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  

 

(4.4)  
L

a

2

4

  

 
For a rod in torsion the torque is proportional to the angle and to the fourth power of the diameter, 
and inversely proportional to the length. A rod which is twice as thick is sixteen times as stiff for 
torsion. 

5. The torsion pendulum and torsion waves 
We shall then briefly look into a matter of elastic dynamics called torsion waves, which in fact is a 
generalization of the torsion pendulum.  

Until about forty years ago the torsion pendulum was one of many 
experiments that the students performed with a rapport in the 9-12 
grade of the Danish high school. It was done with the apparatus 
shown to the left. (The physical notations are somewhat different 
from that of the US)  
The torque H necessary to twist the metal wire an angle  is 
proportional to  . We write this as.  
(5.1)  DH   
D is denoted the torsion coefficient or the directional moment. It 
depends on the length, the thickness and of the materiel of the wire. 
In contrast to Hooke’s law (5,1) also applies to larger angles, that is, 
over 3600,at least for longer and thinner wires.  
If a symmetric mass having moment of inertia I is hung in he wire,  

turned an angle  ,and then released, it will be affected by a torque DH  from the wire.  
According to Newton’s law for rotation the system will obey the equation 
 

(5.2) 
I

D

dt

d
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The well known solution to this differential equation is a harmonic oscillation, which may be 
described as: 

(5.3) )cos( 00   t  , where 
D

I
T

I

D  2  

 
The experiment is not really meaningful, without knowledge of the torsion coefficient D, so D is 
performed in a static determination. As indicated in the figure, this is accomplished by delivering a 
torque from small masses in a cup, connected to the pendulum with a cord. 
By measuring the masses and the angle, you may plot the results into a (m,  ) graph and 
determine D , from the slope.  
Then one can set the torsion pendulum in oscillations, measure the period an compare with the 
formula (5,3). 
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One may however also perform a dynamic determination of the torsion coefficient based on the 
formula (5,3). 
Namely, you may place one or more circular discs with known moment of inertia I1 and I2 on top 
of the pendulum. Since the moments of inertia along the same axis are additive, we may write 
 

(5.4) 2
1

2
2

12220
2
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1 422

TT

II
D

D

II
T

D

II
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








   

5.1 Torsion waves 
We shall then look into torsional waves in a rod of finite thickness, as illustrated below. 
 
 
 
 
 
 
 
 
 
Let z be the distance to some point down the rod. For a static torsion the torque is the same 
everywhere along the rod and proportional to L/ , the total torsion angle over the total length. 
What matters to the material is the local torsion strain, which is z / , so when the torsion along 
the rod is not uniform, we should replace (4.4) by 
 

(5.5)  
z

a
z







2
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Let us then analyze an element of length z shown magnified in the figure above to the right. 
There is a torque )(z  at “end 1” of the little hung of rod, and a torque )( zz   at “end 2”. 

The net torque   acting is then z = )( zz  - )(z = z
z





.  

Differentiating (5.5) we get: 

  z
z

a
z 




 2

24

2
)(

   

 
The effect of this net torque is to give an angular acceleration to the little slice of the rod. The mass 
of the slice is: 
   )( 2 zam   
 
Where  is the density of the material. The moment of inertia of a circular disc is ½mv2. Calling 
the moment of inertia of our little piece of rod for I we have: 
 
(5.6)  zaI  4

2 
  

 
Newton’s law says that the torque is equal to the moment of inertia times the angular acceleration. 
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(5.7)  2

2

t
I




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Inserting the expressions we have obtained for   and I , we have: 
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(5.8)  0
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

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The last equation is recognized as the wave equation, corresponding to a speed of propagation  
 

  



v  

6. The bent beam 
Now we shall look into bending of a rod or a beam, which is 
another matter concerning elasticity. (See the figure to the left). 
We shall first analyze which forces act on a cross section of the 
bar.  
To ease the mathematics, we shall assume a circular cross 
section of the bar, but this is no real limitation to the general 
results.  
However, our results will be correct only when the radius of the 
bend is much larger than the thickness of the beam. 
If you bend a bar, it will follow a curve, like the one shown in 
the figure to the left. Since the bar is curved it will be stretched 
at the upside of the bar and compressed at the inside. Therefore 
we must have a “middle” of the bar, where it is neither stretched 
nor compressed. This is called the neutral surface. 
For a pure bending the, a thin slice of the bar is shown to the 
left (a). The material below the neutral surface has a 
compressional strain, which geometrically is proportional to the 
distance from the neutral surface. So the longitudinal stretch 

l is proportional to the height y. Geometrically, we must have: 
 

  
R

y

l

l



 

 
So the stress – the force per unit area – in a small strip at y is 
also proportional to the distance from the neutral surface. 
 

(6.1)  
R

y
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We shall then analyze the forces that produce such a strain. The forces acting on the little segment 
are drawn in figure (a). The forces above and below the neutral surface have opposite direction and 
together they make a bending moment of force M, that is, a torque about the neutral line.  
We can then compute the total moment by integration the force times the distance from the neutral 
surface for one of the faces of the segment. 
 

    ydFM  

We have from (6.1) dF = Ey/R dA, so 

(6.2)    dAy
R

E
M 2  

We shall denote the integral of y2dA as “the moment of inertia” of the geometric cross section 
about a horizontal axis through its “centre of mass” as I. 
 

(6.3)  
R

EI
M   where  dAyI 2  

Equation (6,3) is the relation between the bending moment M and the curvature 1/R of the beam.  
The stiffness of the beam is proportional to Young’s module E and to 
the moment of inertia I.  
The latter means that if you want to have a stiff beam, with a given 
amount of, say Aluminium then you should put as much as you can far 
away from the neutral surface to create a large moment of inertia.  
This cannot be carried to extremes of course, since otherwise the beam 
will buckle or twist and do not regain its original shape.  
This you already know from experience, since the way one produces  
an H shaped steel beams is quite familiar. (See the figure to the left). 
 

 
As another example of the beam equation (6.3), we shall 
find the deflection of a beam which is fixed in one end, 
with a force F (in the figure W) acting in the free end. 
We are interested in what the shape of the beam may be. 
The mathematical formula for the curvature in a point of  
z = z(x) is: 

(6.4) 
2
3

))/(1(

/1
2

22

dxdz

dxzd

R 
   

Since we are only interested in small bending,  
We shall neglect the square of the differential quotient in the denominator compared to 1, and put 

(6.5)  
2

21

dx

zd

R
  

We shall also need the bending moment M. It is a function of x, because it is equal to the torque of 
any neutral axis of any cross section. We shall neglect the weight of the beam and take only the 
downward force F, at the end of the beam. Then the bending moment at x becomes: 
 
(6.5)  M(x) = F∙(L - x) 
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This is the torque about the point at x, exerted by the force F equal to the torque that the beam 
must support at x. We then have. 
 

(6.6)  
2

2

)(
dx
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EI

R

EI
xLF    

Which gives 

(6.7)  )(
2
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xL
EI

F

dx
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It may easily be integrated to 
 

(6.8)  )
62

(
32 xLx

EI

F
z   

 
here we have used: z(0) = 0 and that dz/dx is also zero at x = 0. This is the shape of the bended 
beam. The displacement at the free end is: 
 

  
3

)(
3L

EI

F
Lz    

 
The polynomial (6,8) is by the way a spline polynomial that is used to give the smoothest 
approximation to a function, given by a series of equidistant points. 
One spline polynomial covers 3 points, In the end points and middle point it has the same value as 
the function, whereas in left end points it also has the same slope as the preceding spline 
polynomial. Physically, we know that this is exactly the case for a bent beam. 

7. Buckling 
We shall turn to the concept of buckling of beams or rods.   
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Consider the situation sketched above to the right in which a rod that normally is straight, is held 
in its bent shape by two opposite forces that push on the ends of the rod. Our aim is then to find the 
shape of the buckled rod and the magnitude of the forces at the ends. 
Let the deflection of the rod from a straight line be y(x), where x is the distance from one end. The 
bending moment M at a point P in the figure is equal to the force multiplied by the moment arm, 
which also is the perpendicular distance y. 
 
(7.1)  FyxM )(  
 
Using the equation (6,3), we have 
 

  Fy
R

EI
  

For small deflections, we can take 22 //1 dxydR   (the minus sign, because the curvature is 
downward), so we get: 

(7.2)  y
EI

F
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yd


2
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But this is just the differential equation for the trigonometric functions. 
So for small deflections the curve for such a bent beam is a sine curve. The “wavelength” of the 
sine wave is seen to be 2L.  So the general solution is  
 
(7.3)  Lxcy /sin    
 
Differentiating twice, we have  
 

(7.4)  y
Ldx

yd
2

2

2

2 
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And when compared to (7.2), we can find the force. 
 

(7.5)  
2

2

L

EI
F   

 
It is noteworthy that according to (7,5) the force is independent of the bending displacement y. 
As a consequence, if the force is less than F, given in equation (7.5) there will be no bending at all. 
But if the force is just slightly greater than this force, the material will suddenly bend a substantial 
amount, that is, for a force larger than the “critical” force 22 / LEI (often called the Euler force), 
the beam will buckle. 
For example if the loading of the columns that hold the second floor of a building exceed the Euler 
force the building will probably collapse. 
 
References: The Feynmann Lectures on physics II (1965).   
                     Arnold Sommerfeld: Mechanics of deformable bodies (64). 
 


